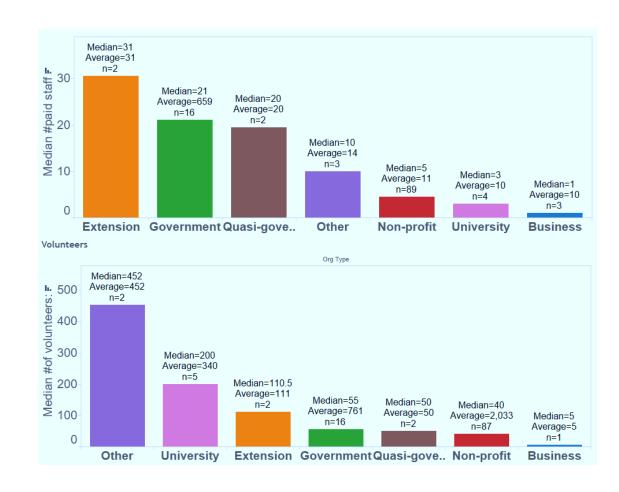



### **Background**

- 2015: Pisces Foundation & Intel Corporation project leaders agree to sponsor a survey of selected groups doing water resource monitoring to better understand gaps between their current and desired:
  - √ Water monitoring practices
  - ✓ Reporting
  - √ Information sharing technologies
- Goal was to empower citizens to protect their water through information gained or managed with the use of low cost technologies
- National Steering Committee of non-profit, business, academic and government experts guided survey development & distribution




### **Survey Audience Profile**

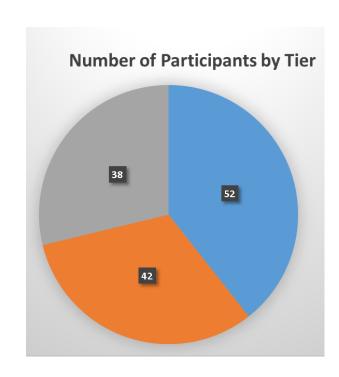
- Key Characteristics:
  - √ 130 respondents—all but 3 in U.S.
  - √ Very knowledgeable—50% monitoring program leads & 78% were either staff, volunteers, or had strong program knowledge
  - ✓ Several respondents represented their regional/national staff network
  - √ Geographically broad representation—42 states
  - √ Mostly non-profits (72%) & govt. (16%) respondents
  - √ 50% answered a watershed was their service area
- Top 3 of 11 mission areas identified were:
  - √ Watershed restoration or protection(80%)
  - √ Water monitoring or assessment (73%)
  - ✓ Public education (68%)
  - ✓ Remaining mission areas all scored below 50%

## LOW COST WATER QUALITY MONITORING NATIONAL SURVEY -- Survey Audience Profile

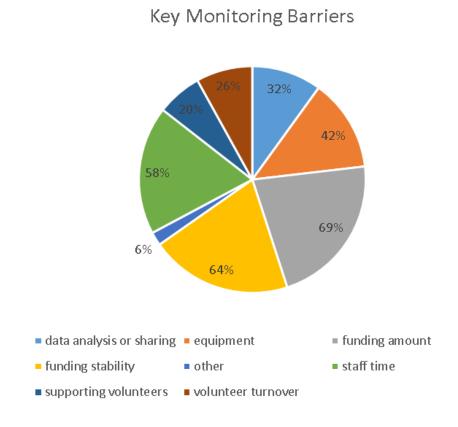
## Staffing Strength by Organization Type

- As anticipated, non-profit organizations typically have few paid staff
- Universities, as might be expected, had high numbers of volunteers (students)




### **Monitoring Program Profile**

- 79% have monitoring programs, 18% do not, 3% are unsure
- Top 5 of 15 monitoring program objective areas were:
  - √ Create long term data sets (77%)
  - ✓ Education (75%)
  - √ Target problem areas (59%)
  - ✓ Report pollution incidents (51%)
  - √ Change community behavior (50%)
- Remaining program objective areas scored below 50%
- Rivers and streams (89%) are monitored most, followed by a distant (32%) for stormwater or wastewater discharges. Yet, only a few monitored drinking water supplies (6%)




### **Monitoring Program Approach**

- Somewhat surprising is the strong deployment of all Tier methods, particularly Tier 3
- Tier 1: basic monitoring methods, equipment and QAQC, used for screening
- Tier 2: advanced methods, better equipment, more QAQC training, used as a local decision support tool
- Tier 3: expert methods, equipment and training, used to support policy/regulatory decisions and scientific findings



- 30% monitor water volume, 64% do not and 6% are unsure
- Top 4 of 8 program barriers
  - √ Funding amount (69%)
  - √ Funding stability (64%)
  - ✓ Staff time (58%)
  - ✓ Equipment (41%)
- Considering funding and people resources are the top two barriers, it is significant to note that equipment emerges as the third leading barrier.



### **Data collection**

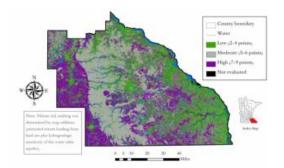
Of the 13 possible answers for data collection methods--3 are deployed by most organizations:

✓ Field test kits 74% (59)

✓ Grab samples & lab analysis 69% (55)

Multi-parameter meters/sensors 49% (39)

 Notably, only a few organizations make use of various types of monitoring stations or cell phone


| grab samples and lab analysis                                 | 68.75% | 55 |
|---------------------------------------------------------------|--------|----|
| prepared samples and lab analysis                             | 23.75% | 19 |
| field test kits                                               | 73.75% | 59 |
| lab test kits                                                 | 16.25% | 13 |
| single parameter electronic meters or sensors                 | 28.75% | 23 |
| multi-parameter meters or sensors                             | 48.75% | 39 |
| other                                                         | 8.75%  | 7  |
| custom assembled sensors                                      | 7.50%  | 6  |
| unattended monitoring stations without telemetry              | 13.75% | 11 |
| unattended monitoring stations with telemetry                 | 5.00%  | 4  |
| long term fixed stations with flow controls without telemetry | 1.25%  | 1  |
| long term fixed stations with flow controls with telemetry    | 3.75%  | 3  |
| cell phone reporting                                          | 13.75% | 11 |

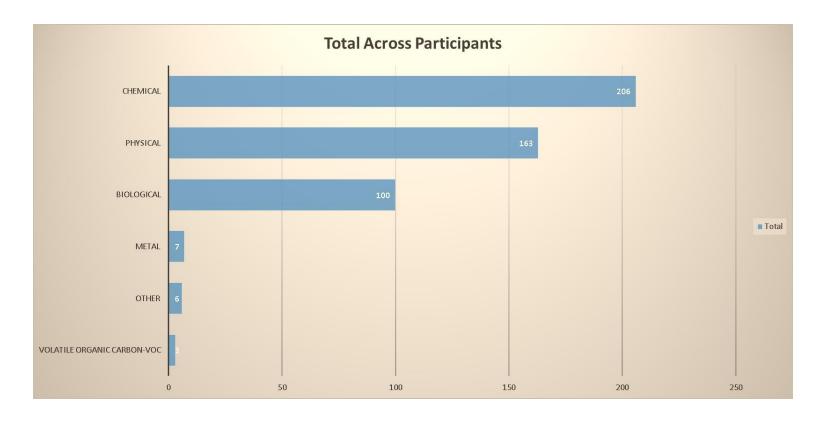
## **Data Sharing**

Data sharing is largely accomplished through:

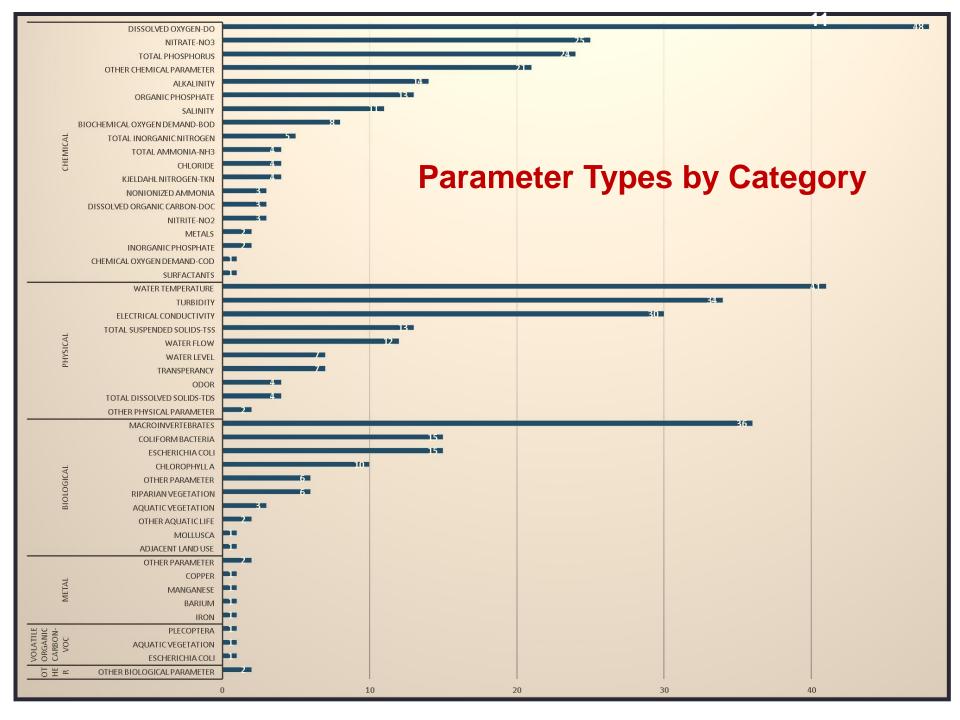
✓ Annual or periodic reports
 ✓ Community outreach
 ✓ Online database
 61% (48)
 58% (46)
 56% (44)

✓ Online map with results 42% (33)

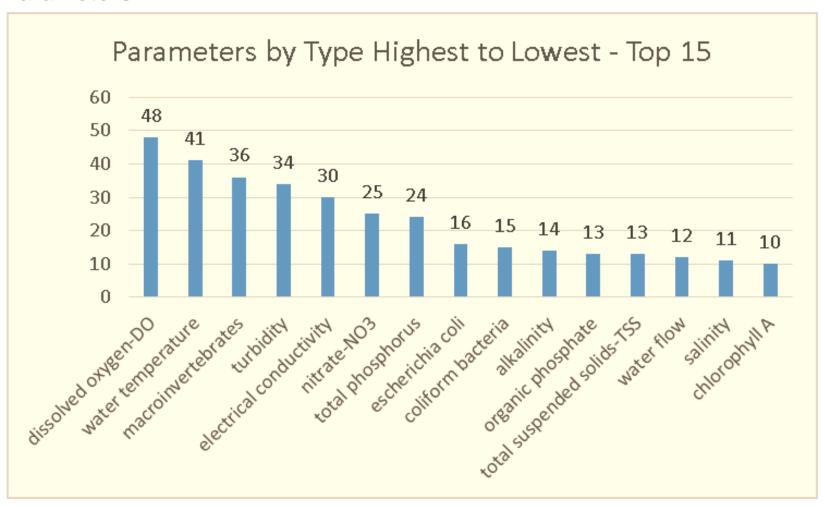



 Alternative water monitoring & information sharing technologies are principally:

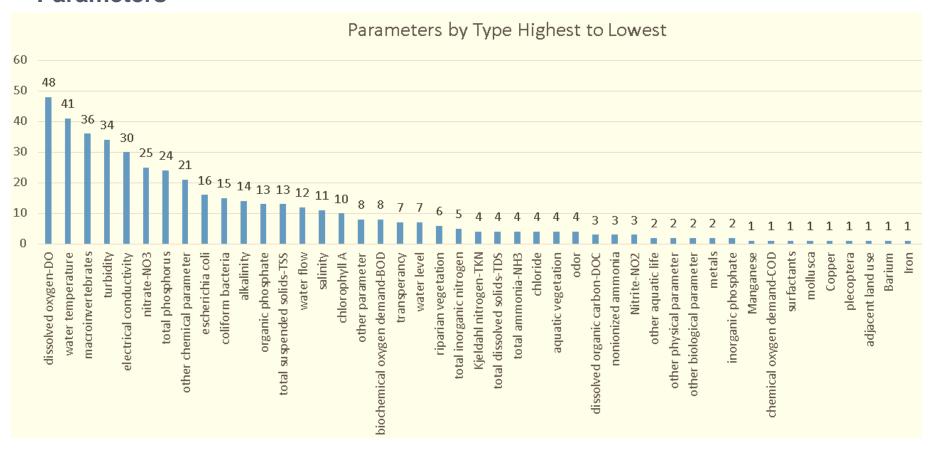
✓ GIS mapping 74% (39)✓ Phone apps 38% (20)




- Data is shared with:
  - ✓ Govt. water quality, wildlife & natural resource agencies at federal, state, & local levels
  - √ General public, news agencies
  - ✓ Stakeholders like farmers, watershed groups, families, board members, funders
  - ✓ Academic sectors including universities, schools, teachers, students


#### **Parameters\***

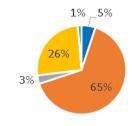



<sup>\*</sup> Respondents completing at least: 1 parameter = 97; 3 p's = 63; 5 p's = 46; 7 p's = 32; 9 p's = 22; 10 p's = 20



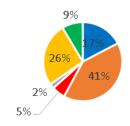
### **Parameters**




#### **Parameters**



#### Parameters—data collection

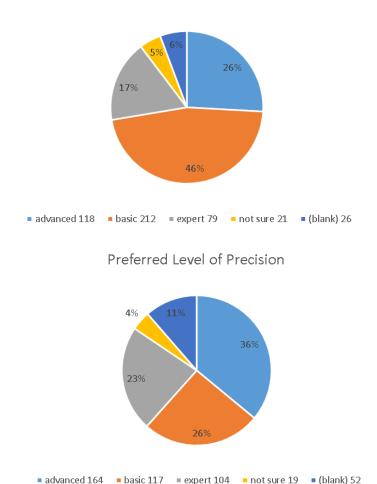

- Across all monitoring parameters, most are using manual data collection methods, yet fewer actually prefer this approach
- Some are unsure what they prefer, while more want a fully automatic approach
- Differences become more apparent with some individual parameters

#### Current Data Collection



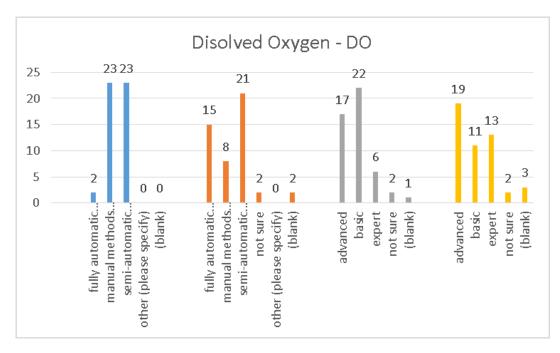
- fully automatic (continuous recording sensor) 23
- manual methods (e.g. test kit, grab sample) 296
- other (please specify) 14
- semi-automatic methods (e.g. meter, sensor) 117
- (blank) 6

#### Preferred Data Collection



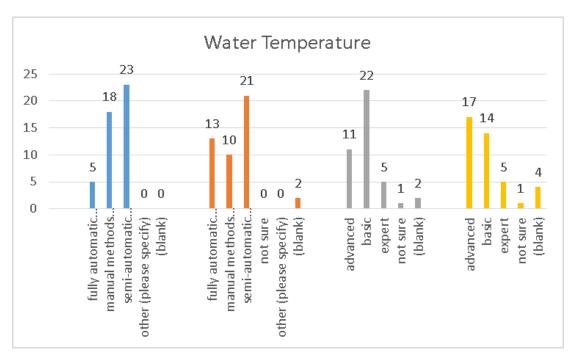

- fully automatic (continuous recording sensor) 79
- manual methods (e.g. test kit, grab sample) 185
- not sure 25
- other (please specify) 9
- semi-automatic methods (e.g. meter, sensor) 119
- (blank) 39

### Parameters—precision level


- Across all monitoring parameters most are engaged with basic levels of precision
- More prefer to transition into advanced and expert precision levels

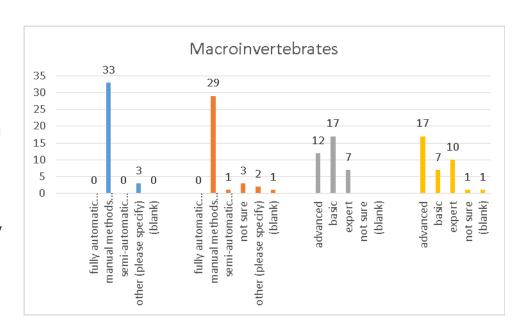
#### Current Level of Precision




## Analysis of Select Top Individual Parameters—data collection & precision

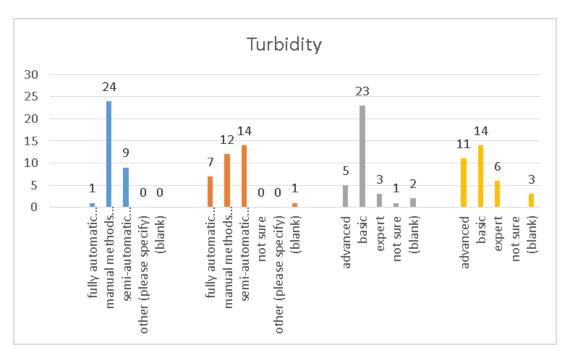
- DO ranked #1
- Many respondents want to fully automate DO collection and continue to shift toward expert & advanced levels of precision




## Analysis of Select Top Individual Parameters—data collection & precision

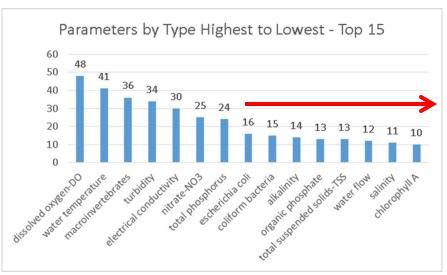
- Water temperature ranked #2
- Many respondents want to fully automate data collection & several would move to advanced levels of precision



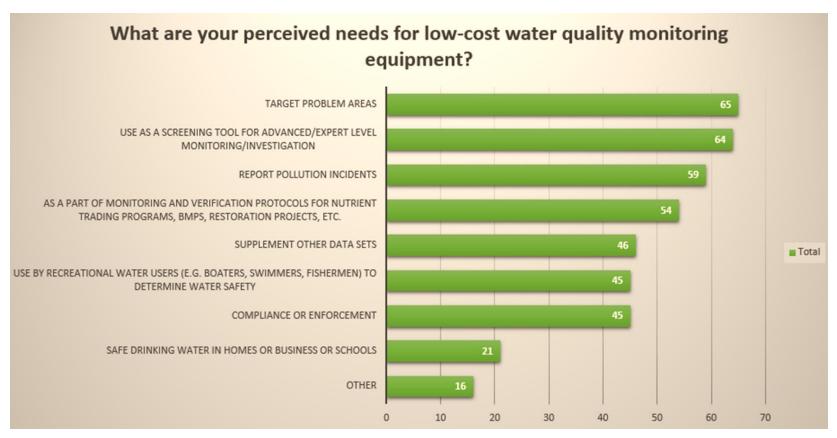

## Analysis of Select Top Individual Parameters—data collection & precision

- Macroinvertebrates ranked #3
- Data shifts are modest. Note that advances in automation & precision levels could be possible through regional collaboration on DNA
- Requires building taxonomic library of species and PCR equipment that can process homogenized or water column samples



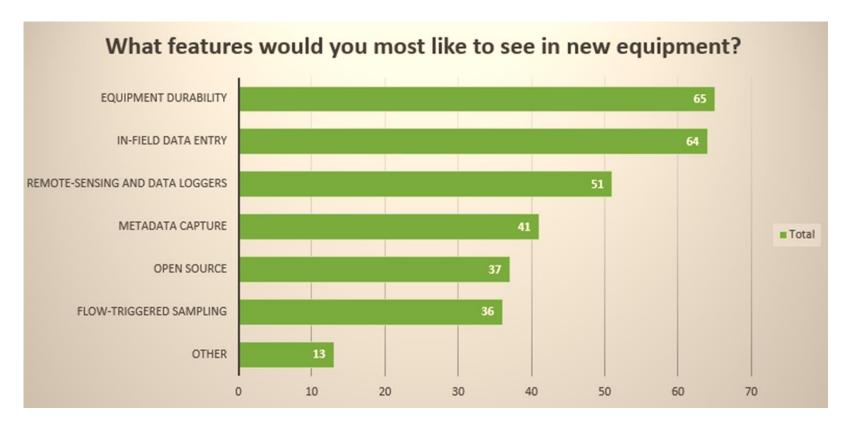

## Analysis of Select Top Individual Parameters—data collection & precision

- Turbidity ranked #4
- Respondents are signaling a clear need for both better data collection and precision levels with their turbidity monitoring




## **Analysis of Select Top Individual Parameters**

- Nitrate-NO3 ranked #6 and total phosphorous ranked #7 did not reveal clear trends for future collection & precision
- Yet, respondents say parameters that are most useful to monitor but can't now, are <u>nutrients e.g. nitrogen & phosphorus</u> in various forms, especially:
  - √ in real time
  - √ with sensors and;
  - ✓ continuous monitoring
- Parameters ranked below total phosphorous were examined. Note
   E. coli and coliform bacteria are used as contamination indicators

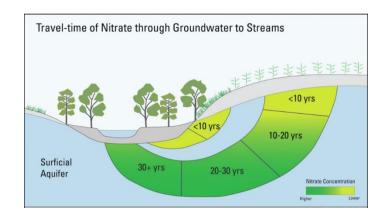


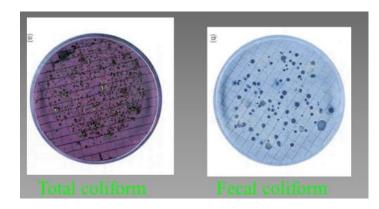

- Most respondents had little knowledge of promising low cost equipment:
  - ✓ No knowledge =74% versus Knowledge Yes = 26%
- Examples of specific suggestions from respondents
  - √ <a href="http://www.lamotte.com/en/biopaddles">http://www.lamotte.com/en/biopaddles</a>
  - ✓ RetaiN Kits
  - ✓ Ott MF Pro Flow Meter
  - ✓ PME miniDOT DO logger / http://pme.com/products/minidot
  - ✓ FlowWatch Flow Meter: <a href="http://www.forestry-suppliers.com/product-pages/Products.asp?mi=65971&itemnum=94356&title=Flowatch%20Flowmeter/Anemometer">http://www.forestry-suppliers.com/product-pages/Products.asp?mi=65971&itemnum=94356&title=Flowatch%20Flowmeter/Anemometer</a>
  - ✓ GPS/sonar fish finders, drone/UAV technology
  - ✓ new test kits for phosphorus, if accurate, like this <a href="http://hannainst.com/products/checker-colorimeters/parameter/phosphorus.htm">http://hannainst.com/products/checker-colorimeters/parameter/phosphorus.htm</a>
  - ✓ We are conducting research to develop new low cost organic carbon and nitrate sensors. There are also efforts in GLEON, the Global Lake Ecological Observatory Network, to do the same. gleon.org.



#### Other examples of needs mentioned:

- ✓ educational use in class rooms, data collection, use by non-experts
- ✓ wilderness water quality monitoring
- √ low enough cost so theft of devices would not hurt programs
- ✓ getting technology in marginalized communities to allow them to share information and be represented.



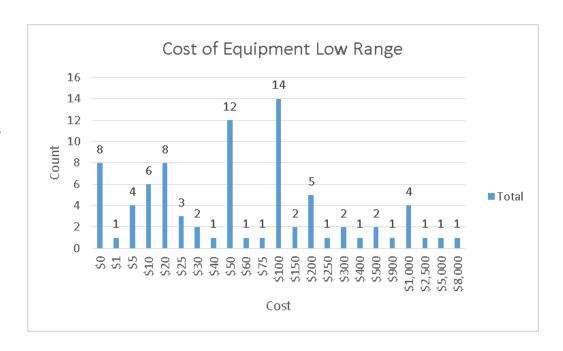


#### Other examples of features needed:

- √ simple intuitive interface and use
- √ be easy to calibrate and store
- √ user-friendly for volunteers
- √ small, and easy to carry in field

## Parameters to Focus on for Low Cost Equipment:

- 74 write-in responses (58%)
- Most mentioned –24 times, was nutrients (N and/P forms)
- <u>Second</u> 14 times, were forms of **bacteria** (fecal coliform, E. coli, etc.)
- Third— 10 times, was dissolved oxygen
- <u>Fourth</u> 6 times, was **turbidity**, followed by water temperature—5 times
- Some preferences emerging, compare parameters monitored rankings:
  - ✓ DO, water temp., turbidity ranked 1,2, 4
  - √ N & P forms ranked 6,7
  - ✓ E. coli & coliform bacteria ranked 8,9 & taken together would move up to #6 of all parameters monitored






## Price ranges of "low cost " equipment:

- ✓ Low range—75% of the respondents were clustered between 0-\$100
- ✓ High range great variability—a majority (57%) clustered between \$500-\$5,000

## Equipment borrowing participation:

- 64% don't participate, 36% do.
   Examples why they do:
  - equipment is loaned to volunteers, schools, monitoring partners
  - equipment is borrowed from EPA, State organizations, non-profit organizations



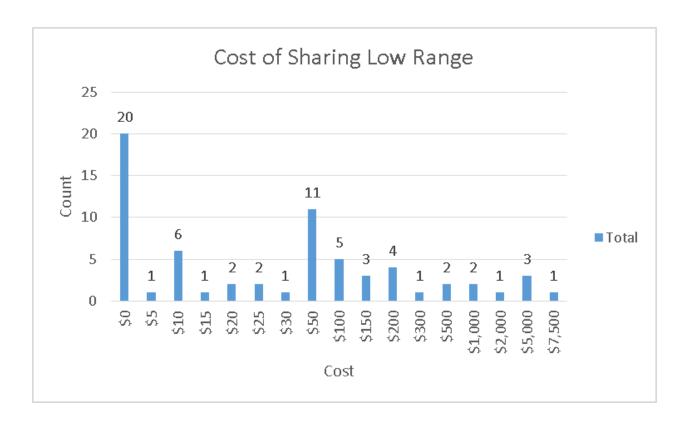
### **Equipment availability:**

- 84% of respondents believe widespread availability of low cost equipment could affect major improvements in water quality
- Many factors limit progress towards better water quality. these themes emerged:
  - ✓ greater affordability, more group/individual participation possible
  - more data can be collected in more places to fill gaps in knowledge & needed action
  - ✓ better public awareness and engagement about the nature & scale of the problem
  - √ may help catalyze broader action



## LOW COST WATER QUALITY MONITORING NATIONAL SURVEY -- Low-cost Data Access & Sharing Tech

### Knowledge of beneficial low-cost data access & sharing technologies


- ✓ Low awareness—78% of respondents are unaware
- ✓ Examples mentioned: Stroud Research Center has described such devices; National Water Quality Portal; Google Drive; Publiclab.org research note system; ESRI data sharing platforms; Chesapeake Commons Water Reporter App; <a href="www.globe.gov">www.globe.gov</a>/; Swim Guide affiliates; <a href="http://crowdhydrology.geology.buffalo.edu/">http://crowdhydrology.geology.buffalo.edu/</a>

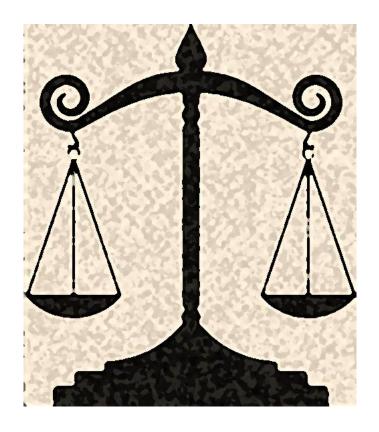
| Greatest perceived needs for low-cost data access & sharing technologies |        |     |
|--------------------------------------------------------------------------|--------|-----|
| crowd sourcing and sharing of water quality data                         | 8.00%  | 8   |
| sharing of water quality information with environmental advocates        | 12.00% | 12  |
| sharing of water quality information with local government officials     | 11.00% | 11  |
| quality and reliability of the data                                      | 21.00% | 21  |
| low unit cost of the data                                                | 12.00% | 12  |
| compliance or enforcement                                                | 6.00%  | 6   |
| reporting pollution incidents                                            | 5.00%  | 5   |
| other                                                                    | 25.00% | 25  |
| Total                                                                    | 100%   | 100 |

## LOW COST WATER QUALITY MONITORING NATIONAL SURVEY -- Low-cost Data Access & Sharing Tech

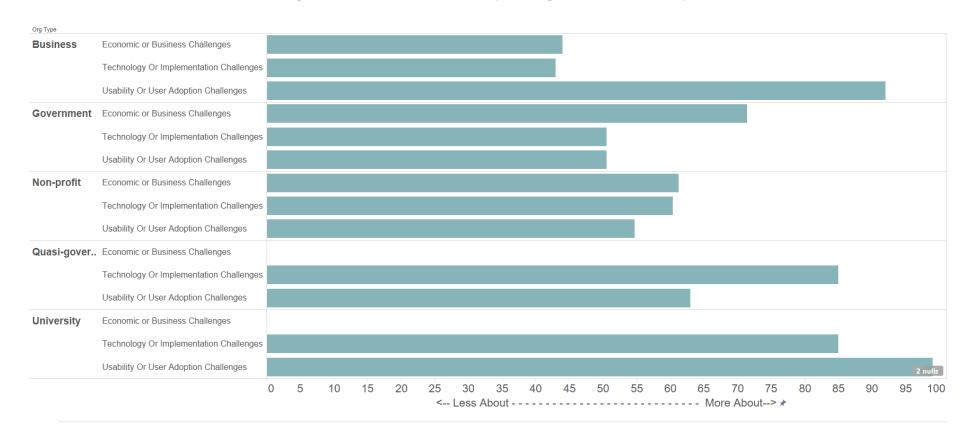
### Price ranges of "low cost" data access & sharing technologies

- ✓ Low range—67% of the respondents were clustered between 0-\$50
- ✓ High range great variability—(60%) clustered between \$100-\$1,000



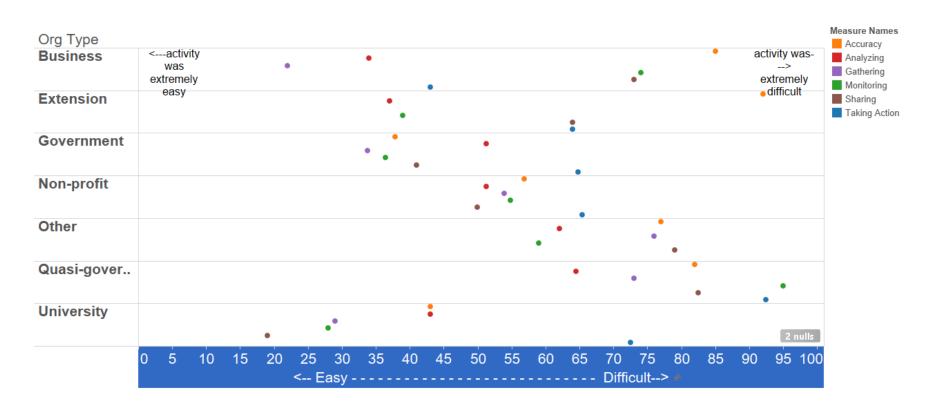

- Final section of survey, developed by Intel staff, asked respondents to tell a story about a monitoring experience
- Stories provide additional depth for follow-up but can't be shared due to privacy policy
- 74 stories completed, 58 of which were categorized into 1 of 3 basic types:
  - ✓ monitoring was a **challenge** 57% (33)
  - ✓ a workaround was used to monitor 10% (6)
  - ✓ monitoring was **working well** 33% (19)
- 16 stories, about (22%) were not categorized by respondents themselves




- Respondents asked to score:
  - √ how common the situation was
  - ✓ whether the effect on monitoring was positive/negative
- What the main challenges were more/less about:
  - √ economic & business challenges
  - √ usability or user adoption challenges
  - √ technology or implementation challenges
- How difficult/easy associated activities were:
  - √ gathering data
  - √ accuracy of data
  - √ analyzing data
  - ✓ taking action based on data



- Overall Results: mean story scores (on a scale of 0-100) were recorded for:
  - √ How common/uncommon the stories were 69
  - √ The positive/effect on monitoring 55
  - ✓ If they were more/less about economic & business challenges 61
  - ✓ If they were more/less about technology or implementation challenges 60
  - ✓ If they were more/less about usability or user adoption challenges – 58




### What the Challenges Were About by Organization Type



<sup>\*</sup> Note: businesses and Universities represent limited numbers of respondents.

## Difficulty of Story Related Activities by Organization Type



<sup>\*</sup> Stories provide additional depth for follow-up

# LOW COST WATER QUALITY MONITORING NATIONAL SURVEY -- Key Findings

#### **GOALS**

- We wanted to survey select groups doing water resource monitoring to better understand gaps between their current and desired:
  - √ Water monitoring practices
  - √ Reporting
  - √ Information sharing technologies
- Our goal was to help empower citizens to protect their water through information gained or managed with the use of low-cost technologies
- The following key findings will assist our efforts to move forward in partnership with other interested parties to help expand the role that low-cost technologies play in protecting and enhancing water quality

# LOW COST WATER QUALITY MONITORING NATIONAL SURVEY -- Key Findings

- 84% of respondents believe widespread availability of low-cost equipment could affect major improvements in water quality
- Top 4 perceived needs for low-cost monitoring equipment:
  - √ target problem areas
  - ✓ use as a screening tool for advanced/expert level monitoring/investigation.
  - ✓ report pollution incidents
  - ✓ As part of monitoring & verification protocols for nutrient trading programs, BMPs, restoration projects, etc.
- Top 4 parameters for low-cost (under \$100) monitoring improvements:
  - ✓ nutrients (N and/P forms)
  - ✓ bacteria (fecal coliform, E. coli, etc.)
  - √ dissolved oxygen
  - ✓ turbidity

# LOW COST WATER QUALITY MONITORING NATIONAL SURVEY -- Key Findings

- Top 4 most desired features in new equipment:
  - ✓ equipment durability
  - ✓ in-field data entry
  - √ remote sensing & data loggers
  - ✓ automatic metadata capture
- 78% of respondents lack knowledge of beneficial low-cost data access & sharing technologies that could benefit their program
- Top 4 perceived needs for low-cost (less than \$50) data access and sharing technologies:
  - ✓ quality and reliability of the data
  - ✓ low unit cost of the data
  - ✓ sharing of water quality information with environmental advocates.
  - ✓ sharing of water quality information with local government officials